
The World Health Organization (WHO) 
has proposed that millions of cancer 
patients could be saved from premature 
death if early detection and treatment 
were available1. Finding the tumour at an 
early stage when it is still localized and 
possibly even before clinical symptoms 
develop is one important application of 
specific biomarkers. This would certainly 
increase the number of radically resected 
tumours and therefore in many cases also 
increase overall survival2. Apart from early 
diagnosis, biomarkers could also provide 
physicians with actionable information 
leading to evidence-based selection of the 
optimal therapy (predictive biomarkers) and 
improved and more precise prognostication 
of disease progression (prognostic 
biomarkers). Ideally protein biomarkers 
should be found in a minimally invasive 
liquid biopsy, such as a simple blood sample. 
However, the question is whether blood 
contains enough information and whether 
we are even close to this scenario?

Tremendous efforts have been made 
over recent decades to find protein 
cancer biomarkers of clinical utility3–6. 
A striking discrepancy exists between 
these efforts and the number of US Food 

between various stakeholders, such as, 
academia, funding agencies, health-care 
providers, reimbursement organizations 
or authorities and commercial companies. 
Consequently, it is a lengthy and winding 
journey that needs to be carefully 
planned and to focus on which clinical 
questions the biomarkers should address. 
The clinical question being addressed 
will have direct implications for sample 
acquisition, including necessary clinical 
documentation, as well as pre-analytical 
variables that might act as confounding 
factors. However, biomarkers of clinical 
utility all relate to an ability to deliver 
accurate and improved diagnostic 
information to the clinicians, as discussed 
below. In this Opinion article I discuss 
the recent evidence now supporting the 
concept that protein biomarker signatures, 
as opposed to individual biomarkers, can 
provide the long-sought accuracy in cancer 
diagnostics. I will not discuss details of other 
biomarkers obtained from liquid biopsies, 
such as circulating tumour cells (CTCs) or 
circulating tumour DNA (ctDNA), although 
these could eventually be combined with 
protein biomarkers.

Multiparametric proteomics
Protein biomarker discovery has in many 
cases been technology driven instead 
of focusing on a specific clinical need. 
Proteomic technology platforms have 
developed rapidly during recent years, 
illustrated by substantially increased 
resolution, that is, depth of proteome 
coverage, and speed in, for example, mass 
spectrometry (MS) analysis and selected 
reaction monitoring or multiple reaction 
monitoring (SRM/MRM) for targeted 
proteomics13. Multiplexed enzyme-linked 
immunosorbent assay (ELISA) has also 
demonstrated clinical applicability (for 
review see REF. 14) and has paved the 
way for next-generation multiparametric 
diagnostics, that is, high-density antibody 
microarrays15,16, which are discussed below. 
Such protein or antibody microarrays can 
theoretically display almost unlimited 
resolution of the most complex proteomes. 
However, in contrast to the more mature 
transcriptional profiling technologies, the 
proteome coverage of antibody microarrays 

and Drug Administration (FDA) approved 
biomarkers, despite the fact that well 
over a thousand single candidate cancer 
biomarkers have been known for several 
years7. Currently, only a handful based on 
a liquid biopsy are FDA approved8 and 
none of these is routinely used for early 
clinical diagnosis, although a few — for 
example, CA125 (also known as mucin 
16) for ovarian cancer, prostate-specific 
antigen (PSA) for prostate cancer and 
CA19-9 for pancreatic cancer — have been 
proposed to be useful for longitudinal 
disease monitoring8,9. The reasons for this 
dismal progress are several: one major one 
is the lack of a clearly defined and relevant 
clinical question that the biomarkers should 
address, as merely discriminating between 
cancer patients and healthy individuals is 
certainly not enough. Furthermore, sample 
quality, technology platform, bioinformatic 
evaluation and reliance on single biomarkers 
are all contributing to the fact that cancer 
biomarkers are scarce6,10.

The development of cancer biomarkers 
of clinical utility11,12, that is, biomarkers that 
generate clinically useful information that 
could change the course of the disease for 
a patient, is a multiphase collaboration 
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is limited by the number of available 
well-characterized antibodies17. For more 
in-depth details of antibody microarrays; 
see REFS 18–21 for reviews. Improved 
accuracy has been achieved through the 
use of antibody microarrays22–24, reverse 
phase protein arrays25,26 and bead-based 
arrays27–29, demonstrating the feasibility of 
multiparametric proteomic analysis.

Analytical design considerations
Sample acquisition and documentation. 
Although novel technologies open up 
new avenues for clinical proteomics 
by introducing substantially improved 
proteome coverage, the quality of available 
samples may be problematic, as these 
have in most cases been collected for 
more traditional analytical set-ups, such 
as immuno histochemistry. The dream 
scenario for management of a complex 
disease such as cancer would be to obtain 
the necessary information to guide clinical 
decisions from a single blood sample. 
To achieve this, the quality of a blood 
sample is crucial, as it is quite easy to 
introduce confounding factors during 
sample collection30. Consequently, sample 
acquisition procedures should be strictly 
standardized. However, this has not been 
the case in many retrospective studies, 
in which standard operating procedures 
did not exist or were highly variable31. 
The introduction of such unknown 
pre-analytical variables can and will affect 
sample integrity and introduce bias, due to 
differences in parameters such as protein 
stability and concentration31. Furthermore, 
comprehensive information about patient 
demographics, such as gender, age, tumour 
stage and treatment schemes, as well as 
lifestyle factors, such as smoking and 
alcohol habits, is necessary to design the 
correct case–control studies, but these data 
are not always easily accessible.

The complexity of sample acquisition 
can be illustrated by the example of breast 
cancer, for which the patients may have 
received neoadjuvant therapy followed 
by various adjuvant treatments, such 
as chemotherapy, hormonal treatment, 
radiation, targeted therapy and even 
combinations of these. Consequently, each 
subgroup must be clearly defined and 
enough samples must be collected from 
each cohort, as differences in treatment 
modalities could have a major impact on the 
results of a proteomic analysis. Therefore, 
sample quality, as well as the available 
clinical documentation, has an essential 
role in clinical proteomics but can often 

different features or subgroups, resulting in 
overinterpretation of the clinical significance 
and in the end, publication of potentially 
incorrect data. Diagnostic, prognostic 
and predictive problems are suitable for 
self-learning algorithms, such as support 
vector machines and artificial neural 
networks, which quickly generate unbiased 
results from large data sets (BOX 1). However, 
when defining larger biomarker signatures 
these approaches are particularly susceptible 
to overfitting, and, as a minimum, the 
leave-one-out cross-validation procedures 
should always be applied. A stricter and 
more desirable approach to minimize model 
instability for biomarker signatures is to 
first generate a classifier, using a training set 
of samples. This classifier is then tested in 
several truly independent test sets, which 
minimizes the risk of model instability and 
data overfitting.

As argued below, it is evident that 
biomarker signatures could be the future for 
precision diagnostics of complex diseases 
such as cancer, as it is the combination 
of biomarkers that contains valuable 

be difficult to obtain in materials from 
biobanks, in which unrecorded variations 
can exist as confounding factors.

Finally, sample sizes usually increase 
as the biomarker moves from discovery 
to pre-validation to validation phase and 
finally into clinical testing. Therefore, 
power calculations should be carried out at 
all stages, unless there is no interventional 
intention, that is, no anticipated consequence 
for the patients, in a particular study32,33.

Bioinformatic considerations. In the past, 
the bioinformatic analysis of a proteomic 
experiment has been an overlooked 
source of data overfitting34, that is, the 
over interpretation of the significance of 
differently expressed proteins in, for example, 
tumour versus normal tissue. This problem 
increases when handling multiplexed 
‘big’ data, as a subset of the markers will 
always randomly correlate with whatever 
parameter is analysed, and this has to be 
adjusted for using statistical methods35. 
This problem frequently becomes an issue 
when subdividing the data set according to 

Box 1 | Bioinformatic principles and terms discussed in this article

Leave-one-out cross-validation
Cross-validation is a validation technique for assessing how the results of a statistical analysis will 
apply to an independent data set. A model is given a data set of known data on which training is 
performed (training set) and a data set of unknown data against which the model is tested (test 
set). When performing leave-one-out, the training set consists of all data points except one, which 
is then used as a test set.

Support vector machine (SVM)
SVM is a supervised learning model in which machine-learning algorithms analyse data used for 
classification.

Kullback–Leibler divergence/error (K-L error)
K-L error is a measure of the difference between two probability distributions (for details, see 
REF. 37).

Summed squared error (SSE)
SSE is a measure of the discrepancy between the data and an estimation model, by which a 
small SSE indicates a good fit of the model to the data.

Backward elimination
This process produces a ranking of biomarkers with the purpose of assigning low ranks to randomly 
correlated biomarkers, consequently generating a signature where all biomarkers contribute to 
the accuracy of a classification (for details, see REFS 36,37 and FIG. 1).

Receiver operating characteristic (ROC)
ROC curves display the relationship between diagnostic sensitivity and specificity. The 
performance of a test classifier is measured as the area under the curve (AUC). A classifier 
performing no better than random will have an AUC of 0.5, whereas a perfect classifier will have  
an AUC of 1. Usually for diagnostic tests it is considered that AUC 0.6–0.7 is poor, AUC 0.7–0.8 is 
fair, AUC 0.8–0.9 is good and AUC 0.9–1.0 is excellent (see for example, Further information,  
The Area Under an ROC Curve).

Model instability
This refers to the situation in which the predictive equation changes considerably between 
training sets74.

Artificial neural networks
These are systems that are self-learning and trained rather than explicitly programmed.

PERSPECT IVES

2 | ADVANCE ONLINE PUBLICATION www.nature.com/nrc



information. However, during biomarker 
analysis the challenge is to define the 
biomarker combination delivering optimal 
analytical accuracy. This cannot be based 
simply on P values, independently calculated 
for each marker, as this loses information 
about synergistic contributions between the 
markers that might be crucial for improving 
the classification accuracy. The challenge 
is to define a combination of ‘orthogonal 
biomarkers’ that do not depend on each 
other, such that the information from each 
is used optimally for the predictive power of 
the signature. To achieve this, we need, in an 
ordered approach, to eliminate the markers 
with the lowest impact on the accuracy, 
which can be achieved by combining the 
leave-one-out cross-validation procedure 
with a backward elimination algorithm36. 
Briefly, iteratively eliminating markers 
one by one and identifying those that 
contributed the least to a correct sample 
classification, using summed squared 
error or the ‘Kullback–Leibler divergence’ 
(REF. 37), would produce a ranking of the 
markers (FIG. 1). This enables the selection 
of a biomarker signature displaying optimal 
accuracy for each application.

The power of biomarker signatures
Today, we have ample evidence that we 
need a multitude of biomarkers, a so-called 
biomarker signature, to mine the wealth of 
information contained in biological fluids 
such as serum or plasma. Combinations 
of biomarkers contain much more 
information38,39 than a single biomarker, 
where the latter does not display sufficient 
discriminatory power to substantially affect 
clinical decisions.

Lessons learned from genomics. Genomics 
has been the forerunner in the use of the 
concept of biomarker signatures, owing to 
the fact that transcriptional profiling has 
been technically easy to perform. This is 
exemplified by a 70-gene prognostic signature 
in sporadic breast tumours that, with 83% 
accuracy, is predictive of poor prognosis  
(a short time period to distant metastases)40,41. 
This gene signature was shown in a 
prospective, European multi-centre trial 
to affect treatment decisions for adjuvant 
chemotherapy42, and received 510(k) FDA 
clearance in 2007. Furthermore, in a 
prospective study on patients with oestrogen 
receptor-positive (ER+) and HER2− (also 
known as ERBB2−) breast cancer, a 21-gene 
signature could identify low-risk patients who 
had a good outcome despite not receiving 
adjuvant chemotherapy43. Recently, a novel 

with a Gleason score of at least 7 (REF. 48). 
This model was shown to also reduce the 
number of benign biopsies by 44%48.

Proteomic biomarker signatures. 
Advanced cancer diagnostics based merely 
on proteomics has only recently delivered 
biomarker signatures with the required 
clinical accuracy. This has been due to 
technological difficulties in decoding complex 
proteomes, as well as to lack of rigorous 
validation49,50. One consequence of these 
issues is that today only one multiparametric 
test has received 510(k) FDA clearance8. 
The test (OVA1 for ovarian cancer) uses 
five proteomic serum biomarkers (CA125, 
transthyretin, apolipoprotein A-I (APOA1), 
β2-micro globulin and transferrin), 
previously identified by surface-enhanced 
laser desorption ionization−time-of-flight 
(SELDI−TOF) MS51 and immunoassay52, to 
assist in identifying patients diagnosed with 
an ovarian tumour for direct referral to a 
gynaecological oncologist, which results in 
overall better outcomes12. The OVA1 test, 
displaying a ROC AUC of 0.90, correctly 
predicted ovarian malignancy in 91.4% 
of cases of early-stage disease, compared 
with 65.7% for CA125 alone12,53. A second- 
generation version of OVA1, also based on 
CA125, transferrin and APOA1, but with 
two additional biomarkers (follicle- 
stimulating hormone and human epididymis 

approach focusing on monitoring four to six 
chromosomal rearrangements in cell-free 
ctDNA in plasma was, in a limited cohort of 
patients with breast cancer, demonstrated 
to be highly accurate (93%) for postsurgical 
discrimination of patients who eventually 
displayed metastatic disease44. If validated in 
an independent, larger cohort, the clinical 
utility clearly lies in the fact that detection  
of ctDNA preceded the clinical diagnosis  
in 86% of patients by an average of 
11 months, potentially enabling initiation 
of an earlier interventional therapy44. These 
studies demonstrate that the information 
content in biomarker signatures could 
enable clinical decisions in cancer, a 
concept further supported by combining 
genomic and proteomic markers, as well 
as including standard clinical variables, as 
exemplified below.

Combining genomic and proteomic 
biomarkers. Prostate cancer has also 
attracted a lot of attention and here the 
clinical utility lies in the possibility of 
distinguishing prostate cancer from benign 
prostate conditions. PSA is associated 
with prostate cancer but also with benign 
prostate indications such as hyperplasia. 
Consequently, owing to poor test specificity, 
most patients with an elevated PSA level 
do not have cancer, which often results 
in over-treatment with no health benefit 
for the patient45,46. Improved test accuracy 
would not only minimize the number 
of negative biopsies but would also 
result in more cost-effective detection47. 
An equally important focus of prostate 
cancer biomarker research, which could 
guide treatment strategies, is to define 
markers for high-risk disease, most widely 
defined by the National Comprehensive 
Cancer Network (NCCN) (see Further 
information) as a Gleason score of >8 or PSA 
>20 ng ml−1 (REF. 46). To achieve this, various 
combinations of genomic or proteomic 
biomarkers have been investigated, resulting 
in both 510(k) FDA cleared tests and 
laboratory developed tests (LDTs); for review 
see REF. 46. In a recent attempt to further 
improve detection of prostate cancer, a 
combination of genetic tumour markers  
(232 single nucleotide polymorphisms 
(SNPs)), six plasma protein biomarkers 
from the literature and five standard 
clinical variables was tested. This approach 
demonstrated improved performance 
(receiver operating characteristic (ROC) 
area under the curve (AUC) of 0.74; see 
BOX 1), compared with PSA alone (ROC 
AUC of 0.56), for the detection of tumours 

Figure 1 | An example of the backward elimi-
nation principle. Backward elimination enables 

the generation of a condensed biomarker 

signature, consisting of biomarkers all contribut-

ing orthogonal information. Kullback–Leibler 

divergence error (K-L error; BOX 1)37 is displayed 

as a function of the number of biomarker elimina-

tions, and enables selection of a signature dis-

playing the lowest divergence error, which in this 

example occurred after approximately 275 mark-

ers had been eliminated. In this example, the 

remaining 25 biomarkers displayed the highest 

achievable accuracy, when the K-L error reached 

its minimum.
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protein 4 (also known as WFDC2)) was 
recently approved by the FDA. This test 
(OVA2) exhibited significantly improved 
specificity54.

The impact of proteomics in cancer 
diagnostics could be advanced by the 
application of novel technologies that could 
significantly improve test accuracy and the 
use of samples from well-designed cohort 
studies49. There is plenty of information in 
serum, but owing to the vast dynamic range 
of protein concentrations, this information 
has been partly inaccessible by conventional 
MS unless pre-analytical procedures such 
as protein depletion and/or extensive 
fractionation are applied55,56. This somewhat 
limits the capacity of MS for biomarker 
discovery in large sample cohorts57. 
However, recent progress in multiplexing58 
and immunoaffinity MS using antipeptide 
antibodies59 is paving the way for clinical 
diagnostics using MS. Furthermore, 
multiplexed MS has already demonstrated 
clinical utility in breast cancer molecular 
classification, displaying a ROC AUC of 
0.83 (REF. 60).

Prognosis of cancer. Over the past couple of 
years, antibody microarrays have reached 
the point at which clinically relevant 
information related to risk classification 
and/or prognosis can be generated. For 
example, based on a microarray set-up 
with 162 antibody fragments, biomarker 
signatures associated with different risk 
groups of patients with prostate cancer 
were identified with ROC AUCs of up to 
0.84 (REF. 61). Furthermore, patients with 
breast cancer could be classified with a ROC 
AUC of 0.85 into high- versus low-risk 
groups for developing metastatic disease, 
using a 21-protein signature36. This was 
based on a retrospective, longitudinal 
study on breast cancer samples collected 
between 0 and 36 months after the primary 
tumour resection, with a follow-up time 
of 5 years36. An antibody microarray 
containing 135 antibody fragments was 
used to identify the 21 proteins based 
on biomarker velocity. Clinical utility was 
demonstrated, as the protein signature 
provided an added value when combined 
with conventional clinical parameters 
(ROC AUC = 0.66). The combination 
increased the ROC AUC to 0.90 for 
prediction of recurrence36. In high-grade 
bladder cancer, an antibody microarray 
was also used to define a panel of two 
prognostic tissue biomarkers associated 
with recurrence-free and progression-free 
survival62.

not be used for pre-diagnostic risk 
assessment, demonstrating the challenges 
for early diagnosis of PDAC.

To circumvent the lack of available 
samples for identifying biomarkers for early 
diagnosis, for which preferably stage I or II 
is needed, another study interrogated the 
tissue proteome of a genetically engineered 
mouse model of PDAC, at preinvasive 
and invasive stages, using a high-density 
antibody microarray66. In a follow-up study, 
plasma samples from both the mouse model 
and pre-diagnostic plasma from individuals 
that later succumbed to PDAC were 
analysed, using an antibody microarray 
platform containing 130 antibodies relevant 
to PDAC67. This combined approach 
enabled the identification of a panel of three 
protein biomarkers giving a ROC AUC of 
0.68 in pre-diagnostic samples, increasing 
to 0.86 in diagnostic samples, that is, those 
derived from patients at the time of clinical 
diagnosis. As noted above, these results 
were based on a three-biomarker signature 
(HER2, tenascin and ER); it seems likely, 
however, that a larger biomarker signature 
would increase the analytical accuracy.

The benefit of a larger panel of 
protein biomarkers was demonstrated 
using a cohort of 148 diagnostic samples 
derived from patients with either PDAC 
or pancreatitis68. Using an antibody 
microarray, a ROC AUC of up to 0.99 was 
achieved in discriminating cancer from 
inflammatory states of the pancreas69. 
This analytical accuracy was based on a 
serum biomarker signature of 25 different 
immuno regulatory proteins68 and was 
optimized by the backward elimination 
principle36 (FIG. 1). Of particular interest is 

Early detection of cancer. The examples 
mentioned above demonstrate that 
combinations of biomarkers can increase 
diagnostic accuracy in several cancer 
indications. However, to achieve clinical 
impact in early diagnosis, performance 
must increase considerably, ideally reaching 
ROC AUC values of approximately 
0.95 (BOX 1), as the consequence of false 
negatives will be substantial for the 
patient, especially when dealing with fast- 
progressing and deadly cancer indications63. 
Furthermore, false positives will also have 
a negative impact for patients, resulting 
in several undesirable side-effects due to 
overtreatment, as mentioned above for 
prostate cancer.

One extensively studied indication is 
pancreatic ductal adenocarcinoma (PDAC), 
as it is one of the most deadly cancers, with 
a 5-year survival of 5–6%, and a mortality 
exceeding that of breast cancer64. As early 
detection of pancreatic cancer could 
significantly improve survival, as well 
as reduce societal costs65, it has been the 
focus of several studies over the past few 
years. In a retrospective study, patients 
with PDAC (samples mostly from late or 
undefined stages) could be discriminated 
from healthy individuals with a ROC 
AUC of 0.93, using a signature of three 
serum biomarkers (CA19-9, intercellular 
adhesion molecule 1 (ICAM1) and 
osteoprotegerin (OPG; also known as 
TNFRSF11B))27. The biomarkers were 
identified using a bead-based antibody 
array, initially screening for 83 markers27. 
However, in a population-based follow-up 
study the same three-biomarker panel 
failed to perform adequately29 and could 

Glossary

Bead-based arrays
Similar to antibody microarrays but the antibodies are 
deposited on micro-beads instead of on a planar surface.

Biomarker velocity
The change in signal of a biomarker over time.

Enzyme-linked immunosorbent assay
(ELISA). A solid-phase immunoassay that measures the 
interaction between proteins and specific antibodies.

510(k)
A premarketing submission made to the US Food and Drug 
Administration (FDA) to demonstrate that the test is safe 
and effective. If cleared by the FDA, the test can be 
marketed in the United States.

Gleason score
A score given to a prostate cancer based on its microscopic 
appearance, whereby a higher Gleason score indicates a 
more aggressive tumour.

Antibody microarrays
Miniaturized enzyme-linked immunosorbent assay 
format.

Laboratory developed tests
(LDTs). In vitro diagnostic tests that are designed, 
manufactured and used in a single laboratory and  
not approved by the US Food and Drug  
Administration.

Reverse phase protein arrays
Arrays in which protein samples are deposited in 
micro-scale on a planar surface and probed with specific 
antibodies.

Selected reaction monitoring or multiple  
reaction monitoring
(SRM/MRM). Two names for a method used in  
tandem mass spectrometry to quantitatively 
target individual proteins or peptides.
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the fact that PDAC could be distinguished 
with high accuracy from benign 
conditions68, as well as from chronic or 
autoimmune pancreatitis69. Consequently, 
a signature based on 25 biomarkers confers 
increased robustness to the analysis, as the 
accuracy is less dependent on variation in 
single biomarkers. This was also recently 
demonstrated in a multi-centre trial 
for early diagnosis of PDAC70, in which 
338 case and control serum samples 
were collected from five different sites 
in Spain, and the discrimination of 
PDAC case versus healthy individual still 
achieved an analytical accuracy of a ROC 
AUC of 0.98 (REF. 70). Furthermore, an 
interesting finding in this study was the 
first indication that a protein marker panel 
could identify the location of a tumour 
within the pancreas, that is, head versus 
body or tail. As the tumour location could 
result in different treatment efficacy71, 
biomarkers that can determine tumour 
localization could be of clinical relevance. 
Finally, a recent study also demonstrated 
the important discrimination for early 
detection between PDAC stage I/II and 
controls in a Chinese cohort, displaying 
a ROC AUC of 0.80 (REF. 72), based on a 
25-biomarker signature. This was again 
carried out using a microarray set-up now 
based on 350 antibodies72.

Conclusions
Consequently, we can today derive novel 
information from a liquid biopsy based 
on protein biomarker signatures in 
various cancer indications, information 
that is actionable and not available using 
conventional approaches. The clinical utility 
is directly apparent in early detection of 
PDAC, risk classification of prostate cancer 
and diagnosis of recurrence in breast cancer, 
although prediction of both therapy efficacy 
and disease progression is emerging as 
highly relevant in several cancer indications. 
Early detection strategies are also a focus 
of the 2016 Cancer Moonshot initiative, as 
well as of the Recalcitrant Cancer Research 
Act of 2012 (see Further information). 
In the latter, the emphasis is in particular 
on improving prevention, detection and 
diagnosis of PDAC and lung cancer. The 
general consensus today leans towards 
the view that prevention is preferable to 
treatment, and this is one grand challenge 
for the emerging field of precision 
diagnostics, in which we will see valuable 
clinical impacts, such as, increased overall 
survival — not for future generations but 
for today’s. However, to finally benefit the 
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being made in identifying protein biomarker signatures 

of clinical utility in cancer using, in particular, 
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